Optics
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.
Most optical phenomena can be accounted for using the classical electromagnetic description of light. Complete electromagnetic descriptions of light are, however, often difficult to apply in practice. Practical optics is usually done using simplified models.
The most common of these, geometric optics, treats light as a collection of rays that travel in straight lines and bend when they pass through or reflect from surfaces. Physical optics is a more comprehensive model of light, which includes wave effects such as diffraction and interference that cannot be accounted for in geometric optics.
Historically, the ray-based model of light was developed first, followed by the wave model of light. Progress in electromagnetic theory in the 19th century led to the discovery that light waves were in fact electromagnetic radiation.
Some phenomena depend on the fact that light has both wave-like and particle-like properties. Explanation of these effects requires quantum mechanics. When considering light's particle-like properties, the light is modeled as a collection of particles called "photons". Quantum optics deals with the application of quantum mechanics to optical systems.
Optical science is relevant to and studied in many related disciplines including astronomy, various engineering fields, photography, and medicine (particularly ophthalmology and optometry). Practical applications of optics are found in a variety of technologies and everyday objects, including mirrors, lenses, telescopes, microscopes, lasers, and fiber optics.
Classical optics
Classical optics is divided into two main branches which are geometrical optics and physical optics. In geometrical, or ray optics, light is considered to travel in straight lines, while in physical or wave optics, light is considered to be an electromagnetic wave.
Geometrical optics can be viewed as an approximation of physical optics which can be applied when the wavelength of the light used is much smaller than the size of the optical elements or system being modelled.
Geometrical optics
Geometrical optics, or ray optics, describes the propagation of light in terms of "rays" which travel in straight lines, and whose paths are governed by the laws of reflection and refraction at interfaces between different media.
These laws were discovered empirically as far back as 984 AD and have been used in the design of optical components and instruments from then until the present day. They can be summarized as follows:
• When a ray of light hits the boundary between two transparent materials, it is divided into a reflected and a refracted ray.
• The law of reflection says that the reflected ray lies in the plane of incidence, and the angle of reflection equals the angle of incidence.
• The law of refraction says that the refracted ray lies in the plane of incidence, and the sine of the angle of refraction divided by the sine of the angle of incidence is a constant.
Physical optics
In physical optics, light is considered to propagate as a wave. This model predicts phenomena such as interference and diffraction, which are not explained by geometric optics. The speed of light waves in air is approximately 3.0×108 m/s (exactly 299,792,458 m/s in vacuum).
The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm).
The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium. Light waves are now generally treated as electromagnetic waves except when quantum mechanical effects have to be considered.
Wave and Sound
Sound is a mechanical wave that results from the back and forth vibration of the particles of the medium through which the sound wave is moving. If a sound wave is moving from left to right through air, then particles of air will be displaced both rightward and leftward as the energy of the sound wave passes through it. The motion of the particles is parallel (and anti-parallel) to the direction of the energy transport. This is what characterizes sound waves in air as longitudinal waves.
Because of the longitudinal motion of the air particles, there are regions in the air where the air particles are compressed together and other regions where the air particles are spread apart. These regions are known as compressions and rarefactions respectively. The compressions are regions of high air pressure while the rarefactions are regions of low air pressure.
The wavelength of a wave is merely the distance that a disturbance travels along the medium in one complete wave cycle. Since a wave repeats its pattern once every wave cycle, the wavelength is sometimes referred to as the length of the repeating patterns - the length of one complete wave. For a transverse wave, this length is commonly measured from one wave crest to the next adjacent wave crest or from one wave trough to the next adjacent wave trough. Since a longitudinal wave does not contain crests and troughs, its wavelength must be measured differently.
A longitudinal wave consists of a repeating pattern of compressions and rarefactions. Thus, the wavelength is commonly measured as the distance from one compression to the next adjacent compression or the distance from one rarefaction to the next adjacent rarefaction.
Since a sound wave consists of a repeating pattern of high-pressure and low-pressure regions moving through a medium, it is sometimes referred to as a pressure wave. If a detector, whether it is the human ear or a man-made instrument, were used to detect a sound wave, it would detect fluctuations in pressure as the sound wave impinges upon the detecting device. At one instant in time, the detector would detect a high pressure; this would correspond to the arrival of a compression at the detector site.
At the next instant in time, the detector might detect normal pressure. And then finally a low pressure would be detected, corresponding to the arrival of a rarefaction at the detector site. The fluctuations in pressure as detected by the detector occur at periodic and regular time intervals. Sound waves traveling through air are indeed longitudinal waves with compressions and rarefactions. As sound passes through air (or any fluid medium) the particles of air do not vibrate in a transverse manner. Do not be misled - sound waves traveling through air are longitudinal waves.
Characteristics of sound waves
A sound wave has the same characteristics as any other type of waveform which includes wavelength, frequency, velocity and amplitude.
Wavelength
Wavelen
gth is the distance from one crest to another of a wave. Since sound is a compression wave, the wavelength is the distance between maximum compressions.Speed or velocity
The sound waveform moves at approximately 344 meters/second, 1130 feet/sec. or 770 miles per hour at room temperature of 20oC (70oF).
Frequency
The frequency of sound is the rate at which the waves pass a given point. It is also the rate at which a guitar string or a loudspeaker vibrates.
The relationship between velocity, wavelength and frequency is:
Velocity = wavelength x frequency
Amplitude
Since sound is a compression wave, its amplitude corresponds to how much the wave is compressed, as compared to areas of little compression. Thus, it is sometimes called pressure amplitude.
Post a Comment